Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»


Коннекционизм


Отличительной чертой нейросетей является глобальность связей. Базовые элементы искусственных нейросетей — формальные нейроны — изначально нацелены на работу с широкополосной информацией. Каждый нейрон нейросети, как правило, связан со всеми нейронами предыдущего слоя обработки данных (см. Рисунок 3, иллюстрирующий наиболее широко распространенную в современных приложениях архитектуру многослойного персептрона). В этом основное отличие формальных нейронов от базовых элементов последовательных ЭВМ — логических вентилей, имеющих лишь два входа. В итоге, универсальные процессоры имеют сложную архитектуру, основанную на иерархии модулей, каждый из которых выполняет строго определенную функцию. Напротив, архитектура нейросетей проста и универсальна. Специализация связей возникает на этапе их обучения под влиянием конкретных данных.

Рисунок 3. Глобальность связей в искуственных нейросетях


Типичный формальный нейрон производит простейшую операцию — взвешивает значения своих входов со своими же локально хранимыми весами и производит над их суммой нелинейное преобразование:


У = f (и), и = w0 +

Рисунок 4. Нейрон производит нелинейную операцию над линейной комбинацией входов


Нелинейность выходной функции активации /(•) принципиальна. Если бы нейроны были линейными элементами, то любая последовательность нейронов также производила бы линейное преобразование, и вся нейросеть была бы эквивалентна одному нейрону (или одному слою нейронов — в случае нескольких выходов). Нелинейность разрушает линейную суперпозицию и приводит к тому, что возможности нейросети существенно выше возможностей отдельных нейронов.


Локальность и параллелизм вычислений


Массовый параллелизм нейро-вычислений, необходимый для эффективной обработки образов, обеспечивается локальностью обработки информации в нейросетях. Каждый нейрон реагирует лишь на локальную информацию, поступающую к нему в данный момент от связанных с ним таких же нейронов, без апелляции к общему плану вычислений, обычной для универсальных ЭВМ. Таким образом, нейросетевые алгоритмы локальны, и нейроны способны функционировать параллельно.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»