Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»


г / Иногда высказывается такое мнение, что статистические методы предназначены для профессионалов, поскольку их использование требует основательной теоретической подготовки. В то же время, нейронные сети — это инструмент любителей, который можно быстро освоить и применять. Как бы то ни было, разработка нейросетевой системы анализа данных действительно может быть осуществлена за значительно более короткое время (порядка нескольких месяцев) нежели создание аналогичной системы статистического анализа (требующее годы). Например, бизнес-стратег Дэниэл Баррас, автор “Technotrands: How to Use Technology to Go Beyond Your Competition” утверждает, что для того, чтобы остаться конкурентноспособным, деловой человек должен не только использовать инструменты будущего, но и использовать их по-новому. В частности, нейросетевые технологии снабжают людей экспертизой, которая прежде могла быть получена лишь в течении многих лет обучения и опыта.


При наличии дополнительных знании о характере задачи статистические данные могут оказаться предпочтительнее. При сравнительном анализе возможностей нейронных сетей и статистических методов надо быть достаточно осторожными, поскольку иногда весьма сложные нейросетевые подходы сопоставляются с простыми статистическими моделями или наоборот. Существует мнение, что одинаково мощные статистические и нейросетевые подходы дают результаты одинаковые по точности и по затратам. Тем не менее, примеры решения действительно важных прикладных задач могут дать представление о возможностях того или иного подхода.


г / Очень важной является проблема диагностирования инфаркта миокарда в приемном покое. Опытные врачи правильно определяют это заболевание в 88% случаев и в 29% случаев дают ложную тревогу. Разнообразные статистические методы, включая дискриминантный анализ, логистическую регрессию, рекурсивный анализ распределений и пр. смогли лишь незначительно снизить число ложных тревог (до 26%). А вот Вильям Бакст, работающий на медицинском факультете университета в Сан-Диего, использовал для диагностики многослойный персептрон и повысил число правильно диагностированных инфарктов до 92%. Но более впечатляющим его результатом было снижение числа ложных тревог до 4%(!). Заметим, что такое значительное уменьшение ложно-положительных реакций является достаточно типичным преимуществом использования нейронных сетей. Эта особенность стимулирует в настоящее время разработку нейросетевых систем диагностики рака молочной железы, для которой ложные диагнозы являются настоящим бичом.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»