Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»


При обычном обучении (без исправления входного вектора) данные располагаются в пространстве вход-выход. Наблюдаемое выходное значение состояния выходного нейрона может рассматриваться как поверхность над пространством входов. Точки, изображающие данные обучающего набора вертикально прижимаются к этой поверхности пружинами, которые запасают некоторую энергию сжатия. Сложность нейронной сети определяется в конкуренции между жесткостью поверхности и жесткостью пружин. В одном из предельных случаев, бесконечно мягкая сеть (поверхность) пройдет как раз через все точки, определяемые данными. В противоположном случае, чрезмерно эластичные пружины не будут оказывать воздействия на поверхность и менять нейронную сеть.


Введение механизма исправления данных соответствует добавлению пружин в пространстве входов — между каждой точкой данных xd л исправленным значением х . Энергия, запасенная в этих пружинах составляет кА2 / 2. Минимизация суммарной функции ошибки соответствует минимизации полной энергии, запасенной в обеих типах пружин. Отношение rj! дописывает конкуренцию между важностью ошибок выхода и важностью ошибок входа.


Понимание закономерностей временных последовательностей


Исправление данных является важной компонентой подхода, позволяющего извлекать из нейронных сетей знания, касающиеся воспроизводимых ими временных закономерностей. Если, например, нейронная сеть обучена и используется для предсказания курса рубля по отношению к доллару, то естественно попытаться осмыслить связь большего или меньшего падения этого курса с теми или иными параметрами, подаваемыми на вход нейронной сети.


Кравен и Шавлик (Craven & Shavlik, 1996) разработали алгоритм TREPAN, порождающий дерево решений, аппроксимирующее поведение обученной нейронной сети. Важным достоинством алгоритма является то, что он не предъявляет никаких требований к архитектуре сети, числу ее элементов и связей (вспомним как важно было упростить структуру сети при использовании правила NeuroRule). Для него вполне достаточно того, что нейронная сеть является черным ящиком или Оракулом, которому можно задавать вопросы и получать от него ответы. Точность предсказания, даваемое сгенерированным деревом решений, близка к точности нейросетевого предсказания.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»