Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»


Главными требованиями, предъявляемыми к методам извлечения знаний, являются эффективность и масштабируемость. Работа с очень большими базами данных требует эффективности алгоритмов, а неточность и, зачастую, неполнота данных порождают дополнительные проблемы для извлечения знаний. Нейронные сети имеют здесь неоспоримое преимущество, поскольку именно они являются наиболее эффективным средством работы с зашумленными данными. Действительно, заполнение пропусков в базах данных — одна из прототипических задач, решаемых нейросетями. Однако, главной претензией к нейронным сетям всегда было отсутствие объяснения. Демонстрация того, что нейронные сети действительно можно использовать для получения наглядно сформулированных правил было важным событием конца 80-х годов. В 1989 году один из авторов настоящего курса поинтересовался у Роберта Хехт-Нильсена, главы одной из наиболее известных американских нейрокомпьютерных фирм Hecht-Nielsen Neurocomputers, где можно узнать подробности о нейроэкспертных системах, информация о которых тогда носила только рекламный характер. Хехт-Нильсен ответил в том смысле, что она не доступна. Но уже через 2-3 месяца после этого в журнале Artificial Intelligence Expert была опубликована информация о том, что после долгих и трудных переговоров Хехт-Нильсен и крупнейший авторитет в области экспертных систем Гэллант запатентовали метод извлечения правил из обученных нейронных сетей и метод автоматической нейросетевой генерации экспертных систем.


Извлечение правил из нейронных сетей подразумевает их предварительное обучение. Поскольку эта процедура требует много времени для больших баз данных, то естественна та критика, которой подвергается использование нейротехнологии для извлечения знаний. Другим поводом для такой критики является трудность инкорпорации в нейронные сети некоторых имеющихся априорных знаний. Тем не менее, главным является артикуляция правил на основе анализа структуры нейронной сети. Если эта задача решается, то низкая ошибка классификации и робастность нейронных сетей дают им преимущества перед другими методами извлечения знаний.


Извлечение правил из нейронных сетей


Рассмотрим один из методов извлечения правил из нейронных сетей, обученных решению задачи классификации (Lu, Setiono and Liu, 1995). Этот метод носит название NeuroRule.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»