Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»


Согласно этой доктрине, для предсказания рыночных кривых необходимо освободиться от власти толпы, стать выше и умнее ее. Для этого предлагается выработать систему игры, апробированную на прошлом поведении временного ряда и четко следовать этой системе, не поддаваясь влиянию эмоций и циркулирующих вокруг данного рынка слухов. Иными словами, предсказания должны быть основаны на алгоритме, т.е. их можно и даже должно перепоручить компьютеру (LeBeau, 1992). За человеком остается лишь создание этого алгоритма, для чего в его распоряжении имеются многочисленные программные продукты, облегчающие разработку и дальнейшее сопровождение компьютерных стратегий на базе инструментария технического анализа.


Следуя этой логике, почему бы не использовать компьютер и на этапе разработки стратегии, причем не в качестве ассистента, рассчитывающего известные рыночные индикаторы и тестирующего заданные стратегии, а для извлечения оптимальных индикаторов и нахождения оптимальных стратегий по найденным индикаторам. Такой подход — с привлечением технологии нейронных сетей — завоевывает с начала 90-х годов все больше приверженцев (Beltratti, 1995, Бэстенс, 1997), т.к. обладает рядом неоспоримых достоинств.


Во-первых, нейросетевой анализ, в отличие от технического, не предполагает никаких ограничений на характер входной информации. Это могут быть как индикаторы данного временного ряда, так и сведения о поведении других рыночных инструментов. Недаром нейросети активно используют именно институциональные инвесторы (например, крупные пенсионные фонды), работающие с большими портфелями, для которых особенно важны корреляции между различными рынками.


Во-вторых, в отличие от теханализа, основанного на общих рекомендациях, нейросети способны находить оптимальные для данного инструмента индикаторы и строить по ним оптимальную опять же для данного ряда стратегию предсказания. Более того, эти стратегии могут быть адаптивны, меняясь вместе с рынком, что особенно важно для молодых активно развивающихся рынков, в частности, российского.


Нейросетевое моделирование в чистом виде базируется лишь на данных, не привлекая никаких априорных соображений. В этом его сила и одновременно — его ахиллесова пята. Имеющихся данных может не хватить для обучения, размерность потенциальных входов может оказаться слишком велика. Далее в этой главе мы покажем как для преодоления этих типичных в области финансовых предсказаний трудностей можно воспользоваться опытом, накопленным технического анализом.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»