Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»


Генетические алгоритмы используют соответствующую терминологию, конфигурации системы называют хромосомами, над которой можно производить операции кроссинговера и мутации. Хромосома является основной информационной единицей, кодирующей переменную, относительно которой ищется оптимум. Обычно она представляет собой битовую строку, хотя компоненты этой строки могут иметь и более общий вид (для задачи коммивояжера компоненты хромосом представляют собой последовательность номеров городов в данном маршруте, например (145321)). Каждая компонента хромосомы называется геном. Выбор удачного представления для хромосомы, или же кодировка искомого решения, могут значительно облегчить нахождение решения.


Обучение происходит в популяции хромосом, к которым на каждом шаге эволюции применяются две основные операции. При мутациях в хромосоме случайным образом выбираются и изменяются ее компоненты (гены). При кроссинговере две хромосомы А и В разрезаются на две части в случайно выбранной одной точке А=(А1, А2) и В-(ВЬ В2) и обмениваются ими, давая две новые хромосомы: А-{А^, В2) и В-(В1, А2) (см. Рисунок4).


ХРОМОСОМА



МУТАЦИЯ




КРОССИНГОВЕР


1


11


1 0


1


0


1 1 0


г


1


0(


0 1


00


0


10


111




0


0


1


0


0


1


0


0


1


1


1 о 1



1


1


1


1


0


0


1


0


1


1


1


Рисунок 4. Представление искомого решения в виде битовой строки -хромосомы (вверху). Операции мутации и кроссинговера (внизу)


После каждого шага эволюции — генерации, на котором мутируют и подвергаются кроссинговеру все хромосомы, для каждой из новых хромосом вычисляется значение целевого функционала, которое достигается на кодируемых ими решениях. Чем меньше это значение для данной хромосомы, тем с большей вероятностью она отбираются для кроссинговера. В ходе эволюции усредненное по популяции значение функционала будет уменьшаться, и после завершения процесса (проведения заданного числа генераций) хромосома с минимальным его значаением выбирается в качестве приближенного решения поставленной задачи. Можно значительно улучшить свойства генетического алгоритма если после порождения новой генерации хромосом предварительно объединить ее с предыдущей популяцией и выбрать из 2N полученных хромосом N наилучших. Опыт показывает, что генетические алгоритмы особенно эффективны при поиске глобального оптимума, поскольку они осуществляют поиск в широком пространстве решений. Если закодировать в виде хромосом значения весов и порогов нейронной сети заданной архитектуры и использовать в роли минимизируемой функции функционал ошибки, то генетические алгоритмы можно использовать для обучения этой нейронной сети. Очевидно, что для этой же цели можно использовать и описанный ранее метод иммитации отжига.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»