Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»

Рисунок 3. Локальный поиск наилучшего нейрона: w, -предыдущий нейрон ; ближайшие его соседи вплоть до 2 порядка являются кандидатами в победители на следующем шаге.


Для устранения на шаге 2 линейного поиска звена с максимальной ошибкой используется тот факт, что таким звеном является то, которое связывает нейроны, часто становящиеся побед итями.


Третий шаг тоже можно модифицировать: если некоторый нейрон несколько раз оказывается ближайшим для данного города, значит для этого города структура кольца уже стабилизировалась и нейрон “приклеивается” к данному пункту маршрута. Это означает, что он совмещается со своим городом и больше уже не двигается. Город же удаляется из списка городов, разыгрываемых на шаге распределения. Когда этот список становится пустым процесс поиска маршрута заканчивается.


Таким образом, каждый шаг в цикле теперь требует постоянное число операций и временная сложность всего алгоритма становится порядка O(N).


Описанный эффективный нейросетевой подход (FLEXMAP) был протестирован на разных распределениях городов числом до 200 и неизменно находил маршруты, отличающиеся не более чем на 9% от оптимального.


Нейросетевая оптимизация и другие “биологические “методы


Преимущества и недостатки нейросетевой оптимизации познаются в сравнении с другими развитыми в настоящее время методами. Из методов, которые иногда дают аналогичные, а порой и лучшие результаты, отметим генетические и эволюционные алгоритмы (Fogel, 1993), а также метод муравьиных колоний (Dorigo & Gambardella, 1996).


В этом разделе мы очень кратко остановимся на них, поскольку эти подходы, так же как и нейросети, используют ясные и плодотворные биологические аналогии. Кроме того, генетические алгоритмы широко используются и для обучения нейронных сетей самих по себе, поскольку обучение нейросетей связано с минимизацией функционала ошибки.


Генетические алгоритмы


Эти алгоритмы могут использоваться для поиска экстремума нелинейных функций с множественными локальными минимумами. Они имитируют адаптацию живых организмов к внешним условиям в ходе эволюции. Точнее, они моделируют эволюцию целых популяций организмов и поэтому требуют достаточно больших ресурсов памяти и высокой скорости вычислительных систем. Важным достоинством их является то, что они не накладывают никаках требований на вид минимизируемой функции (например, дифференцируемость). Поэтому их можно применять в случаях, когда градиентные методы не применимы.
28

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»