Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»



оптимизация


Комбинаторная оптимизация и NP-полные задачи. Сеть Хопфилда решает задачу коммивояжера. Метод иммитации отжига. Оптимизация и сети Кохонена. Растущие нейронные сети. Другие “биологическиеметоды.


Ш В Смеральдине, городе на воде, сеть каналов накладывается и пересекается с сетью улиц. Чтобы добраться от одного места к другому, всегда можно выбрать между сухопутной дорогой и лодкой, но поскольку в Смеральдине самый короткий путь пролегает не по прямой линии, а по зигзагообразной,….


Итало Капьвино. Незримые города


Сети минимизирующие энергию, рассмотренные в предыдущей главе, при релаксации к одному из своих стационарных состояний решают, по существу, оптимизационную задачу — поиск минимума определенной функции своего состояния — энергии. Следовательно, и ассоциативную выборку информации, и выявление прототипов можно сформулировать как частный случай задачи оптимизации. В целом же, оптимизационные задачи представляют собой широкий класс задач, часто встречающихся на практике, в частности, в экономике и бизнесе. В этой главе мы покажем как нейросети можно приспособить к решению таких задач на примере очень важного класса задач комбинаторной оптимизации. Такие задачи, кроме прочего, позволят нам познакомиться с новыми методами оптимизации, отличающимися от градиентных методов, лежащих в основе обучения методом backpropagation.


Комбинаторная оптимизация и задача коммивояжера


В задачах комбинаторной оптимизации требуется найти наилучшее из конечного, но обычно очень большого числа возможных решений. Если задача характеризуется характерным числом элементов {размерностью задачи), то типичное число возможных решений, из которых


предстоит сделать выбор, растет экспоненциально — как aN или еще скорее — как N (напомним, что согласно известной формуле Стирлинга NI = {N/e} для достаточно больших


N).


Это свойство делает простой метод перебора всех вариантов, в принципе гарантирующий решение при конечном числе альтернатив, чрезвычайно неэффективным, т.к. такое решение требует экспоненциально большого времени. Эффективными же признаются решения, гарантирующие получение ответа за полиномиальное время, растущее как полином с ростом размерности задачи, т.е. как .
24

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»