Математика случая: Вероятность и статистика — основные факты

Скачать в pdf «Математика случая: Вероятность и статистика — основные факты»


Параметрические и непараметрические гипотезы


Статистические гипотезы бывают параметрические и непараметрические.


Предположение, которое касается неизвестного значения параметра распределения, входящего в некоторое параметрическое семейство распределений, называется параметрической гипотезой (напомним, что параметр может быть и многомерным). Предположение, при котором вид распределения неизвестен (т.е. не предполагается, что оно входит в некоторое параметрическое семейство распределений), называется непараметрической гипотезой. Таким образом, если распределение F(x) результатов наблюдений в выборке согласно принятой вероятностной модели входит в некоторое параметрическое семейство {F(x;9), 9*=0}, т.е. F(x) =F(x;Q0) при некотором 9о*=0, то рассматриваемая гипотеза — параметрическая, в противном случае — непараметрическая.


Если и Н0 и Н1 — параметрические гипотезы, то задача проверки статистической гипотезы — параметрическая. Если хотя бы одна из гипотез Н0 и Н1 — непараметрическая, то задача проверки статистической гипотезы — непараметрическая. Другими словами, если вероятностная модель ситуации — параметрическая, т.е. полностью описывается в терминах того или иного параметрического семейства распределений вероятностей, то и задача проверки статистической гипотезы — параметрическая. Если же вероятностная модель ситуации — непараметрическая, т.е. ее нельзя полностью описать в терминах какого-либо параметрического семейства распределений вероятностей, то и задача проверки статистической гипотезы — непараметрическая. В примерах 11-13, 16, 17, 20-22 даны постановки параметрических задач проверки гипотез, а в примерах 14, 15, 18, 19, 2325 — непараметрических. Непараметрические задачи делятся на два класса: в одном из них речь идет о проверке утверждений, касающихся функций распределения (примеры 14, 15, 18, 19, 25), во втором — о проверке утверждений, касающихся характеристик распределений (примеры 23, 24).


Статистическая гипотеза называется простой, если она однозначно задает распределение результатов наблюдений, вошедших в выборку. В противном случае статистическая гипотеза называется сложной. Г ипотеза 2 из приведенного выше списка, нулевые гипотезы в примерах 11, 12, 14, 20, нулевая и альтернативная гипотезы в примере 21 -простые, все остальные упомянутые выше гипотезы — сложные.

Скачать в pdf «Математика случая: Вероятность и статистика — основные факты»