Interdisciplinary Applied Mathematics

Скачать в pdf «Interdisciplinary Applied Mathematics»

Saur, M., Angerer, B., Ankenbauer, W., Foldes-Papp, Z., Gobel, F., Han, K. T., Rigler, R., Schulz, A., Wolfrum, J., and Zander, C. (2001). Single molecule DNA sequencing in submicrometer channels: State of the art and future prospects. J. Biotechnol., 86(3):181-201.

Schaaf, S. A. and Chambre, P. L. (1961). Flow of Rarefied Gases. Princeton University Press, Princeton.

Schamberg, R. (1947). The Fundamental Differential Equations and the Boundary Conditions for High Speed Slip-Flow, and Their Application to Several Specific Problems. PhD thesis, California Institute of Technology.

Schasfoort, R. B., Schlautmann, S., Hendrikse, J., and Berg, A. V. (2001). Electroosmotic flow in a microcapillary with one solution displacing another solution. J. Colloid Interface Sci., 242:264-271.

Schmidt, K. E. and Lee, M. A. (1991). Implementing the fast multipole method in three dimensions. J. Stat. Phys., 63:1223-1235.

Schnell, E. (1956). Slippage of water over nonwettable surfaces. J. Appl. Phys., 27(1):1149-1152.

Schrag, G., Voigt, P., and Wachutka, G. (2001). Squeeze film damping in arbitrary shaped microdevices modeled by an accurate mixed level scheme. In Modeling and Simulation of Microsystems, pages 92-95.

Schrag, G. and Wachutka, G. (2002). Physically based modeling of squeeze film damping by mixed-level system simulation. Sens. Actuators, A, 97-98:193200.

Seidl, M. and Steinheil, E. (1974). Measurement of momentum accommodation coefficients on surfaces characterized by auger spectroscopy, SIMS and LEED. In Proceedings of the Nineth International Symposium on Rarefied Gas Dynamics, pages E9.1-E9.2.

Senapati, S. and Chandra, A. (2001). Dielectric constant of water confined in a nanocavity. J. Phys. Chem. B, 105:5106-5109.

Скачать в pdf «Interdisciplinary Applied Mathematics»