Interdisciplinary Applied Mathematics

Скачать в pdf «Interdisciplinary Applied Mathematics»

Nikunen, P., Karttunen, M., and Vattulainen, I. (2003). How would you integrate the equations of motion in dissipative particle dynamic simulations? Computer Physics Communications, 153:407-423.

Niu, X. Z., Tabeling, P., and Lee, Y. K. (2003). Finite time Lyapunov exponent for micro chaotic mixer design. In Proccedings of IMECE’03, ASME, Washington, D.C., November 16-21.

Noble, D. R., Chen, S., Georgiadis, J. G., and Buckius, R. O. (1995). A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids, 7:203-209.

Nomura, T. and Hughes, T. J. (1992). An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng., 95:115.

Nose, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 52:255-268.

O’Brien, R. W. and White, L. R. (1978). Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2, 74:1607-1626.

O’Connell, S. T. and Thompson, P. A. (1995). Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Phys. Rev. E, 52:R5792.

Oddy, M. H., Santiago, J. G., and Mikkelsen, J. C. (2001). Electrokinetic instability micromixing. Anal. Chem., 73(24):5822-5832.

Ogrodzki, J. (1994). Circuit Simulation Methods and Algorithms. Boca Raton, Florida, CRC Press.

Ohshima, H. and Kondo, T. (1990). Electrokinetic flow between two parallel plates with surface charge layers: Electroosmosis and streaming potential. J. Colloids and Interface Science, 135(2):443-448.

Ohwada, T. and Sone, Y. (1992). Analysis of thermal stress slip flow and negative thermophoresis using the Boltzmann equation for hard-sphere molecules. Eur. J. Mech., B/Fluids, 11:389-414.

Скачать в pdf «Interdisciplinary Applied Mathematics»