Interdisciplinary Applied Mathematics

Скачать в pdf «Interdisciplinary Applied Mathematics»

Muntz, E. P. (1989). Rarefied gas dynamics. Ann. Rev. Fluid Mech., 21:387-417.

Myong, R. S. (1998). Thermodynamically consistent hydrodynamic computational models for high Knudsen number gas flows. Phys. Fluids, 11 (9):2468-2474.

Myong, R. S. (2004). Gaseous slip models based on the Langmuir adsorption isotherm. Phys. Fluids, 16(1):104-117.

Nada, H. and van der Eerden, J. P. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of water. J. Chem. Phys., 118:7401-7413.

Nagel, L. W. and Pederson, D. O. (1973). Simulation Program with Integrated Circuit Emphasis. In Proceedings of the 16th Midwest Symposium Circuit Theory, Waterloo, Canada.

Naguib, N., Ye, H., Gogotsi, Y., Yazicioglu, A. G., Megaridis, C. M., and Yoshimura, M. (2004). Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Letters, in press.

Nakane, J. J., Akeson, M., and Marziali, A. (2003). Nanopores sensors for nucleic acid analysis. J. Phys.: Condens. Matter, 15:R1365-R1393.

Nanbu, K. (1983). Analysis of Couette flow by means of the new direct simulation method. J. Phys. Soc. Japan, 5:52.

Nguyen, N. T. and Wereley, S. (2003). Fundamentals and Applications of Microfluidics. Artech House, Microelectromechanical Systems Library.

Nie, X., Doolen, G. D., and Chen, S. (1998). Lattice-Boltzmann simulations of fluid flows in MEMS. Technical report, Los Alamos Report, unpublished.

Nie, X. B., Chen, S. Y., E, W. N., and Robbins, M. O. (2004). A continuum and molecular hybrid method for micro- and nano-fluid flow. J. Fluid Mech., 500:55-64.

Скачать в pdf «Interdisciplinary Applied Mathematics»