Building the Data Warehouse

Скачать в pdf «Building the Data Warehouse»


phenomenon, 41 DBMS types, 179-180 detail levels, 239, 242 DSS analysts, 19 encoding data, 33 exploration, 53 functionality of data movement, 118-121 granularity, 43-46 hardware utilization, 23 history of data, 33 incorrect data, 76 integration, 31 interfaces, 283-284 light summarization data, 50 living sample


databases, 53-55 meta data, 113, 189-190 monitoring


environment, 25-28 multiple level, 232-235 multiple storage media, 189 nonvolatility, 33 partitions, 55-58 physical tables, 36-38 reference tables, 113-114 refreshing, 195-196 rolling summary data, 59


simple direct file, 61 snapshots, 111 standards manuals, 64 storage media, 39


structure, 35 subject areas, 283 subject orientation,


31, 36


time horizon, 34 time variance, 34 true archival level of data, 51 volume


management, 126 databases, 4 day 1-day n


phenomenon, 41 DBMSs (database management systems), 4 changing, 181 multidimensional, 182-188 types, 179-180 deliberate introduction of redundant data, 105 delta lists, 289 denormalization, 104-106 departmental data level, 17 derived data, 15 design models, 87 design reviews, 321 administering, 324 agenda, 323 alternate storage, 341 attendees, 323-324 auditing, 335 changing business needs, 326


class IV ODS, 339 compaction, 335 cross media storage managers, 341 data


corrections, 334 models, 326 ownership, 334 relationships, 332 storage, 341 dormancy rates, 339


end user


requirements, 325 exploration


warehouses, 339 extent of


development, 325 external data issues, 336 extract processing, 327 flowback, 337 Granularity


Manager, 340 granularity of data, 331 indexing data, 330 loading issues, 333 locating data, 337 logging, 336 managing data access, 331


meta data storage, 335 migration plans, 326 outages, 333 partitioning, 338 physical data


organization, 329 processing capacity requirements, 332 processing charges, 338 processing volume, 331 public summary data, 334


purge criteria, 331 recovery times, 333 reference tables, 335 repetitive


processing, 337 restructuring, 329 SDLC, 322 SLAs, 330


software interfaces, 329 sparse indexes, 338 subject area midlevel models, 340 system of record, 327 temporary indexes, 338 time lag issues, 336 updates, 336


volume of data, 328 when to perform, 322 designing data

Скачать в pdf «Building the Data Warehouse»