Технологическое прогнозирование

Скачать в pdf «Технологическое прогнозирование»


2. Построим регрессию вида    Y (х4,Ро,Р4)= Ро+Р4 54. Получим оценки коэффициентов


Y (x4,p0,p4)=117,56-0,74×4.


Определяем F-критерий значимости модели


~ SSreg(p =2) 11    1831,9    _


F = ^ RSS (b)11    = “803 . SSreg(p = 2) =1831,9,RSS (b)=883,9,Y=95,4.


= <


F0,90(1,11) 3,23F,поэтому регрессия значима и переменнуюх4следует сохранить в регрессии.


-i RSS (b)_ I *100% = 67,5% — доля объясненной вариации.


г



2    2 I


R % :R =1 ■


I    I


1.    SSreg( p =2)+ RSS (b)J


3. Вычислим выборочные частные коэффициенты корреляции rjy4 :


Xj


X1


X2


X3


r


jy4


0,9


0,


0,8


1


02


0

В качестве следующей переменной для включения в регрессионное уравнение выбираем переменную Хц имеющую наибольший коэффициент корреляции.


4. Получим новое МНК-уравнение регрессии:


Y (xp Х4,6о,^1,^4)= bo+ bixi +Ъ x= 103,1+1,44xi-0,61×4.


F-критерий значимости модели


F =



SSreg( Р =3) / 2    1320,5



=176,63



RSS (b) 10    7,48


SSreg( p=3)=2641,RSs(b)=74,76осколькуFo,90(2,10)=    4,10 <F,to данная модель значима.При


2


этом получается R %=97,2% , что дает существенное улучшение описания.


F-критерий для включения новой переменной Х1


SSreg(Р =3)- SSreg(Р =2)



F =



=108,22 >F09    (1,10) = 4,96


5gen(p =3)


2


Jgen (p= 3) =RSS(bp ) 10 = 7,48 Поэтому Х1 следует оставить в составе уравнения.    ~


Аналогичная проверка для включения Х4 дает F = 159,29> F09 (1,10) = 4,96 . И переменная Х4 также остается в составе регрессии.

Скачать в pdf «Технологическое прогнозирование»