Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»


!гУ Логистическая регрессия является методом бинарной классификации, широко применяемом при принятии решений в финансовой сфере. Она позволяет оценивать вероятность реализации (или нереализации) некоторого события в зависимости от значений некоторых независимых переменных — предикторов: xb…,xN. В модели логистической регресии такая вероятность имеет аналитическую форму: Pr(x) =(l+exp(-z))»‘, где z = а,,+ а]Х]+…+ aNxN. Нейросетевым аналогом ее очевидно является однослойный персептрон с нелинейным выходным нейроном. В финансовых приложениях логистическую регрессию по ряду причин предпочитают многопараметрической линейной регрессии и дискриминантному анализу. В частности, она автоматически обеспечивает принадлежность вероятности интервалу [0,1], накладывает меньше ограничений на распределение значений предикторов. Последнее очень существенно, поскольку распределение значений финансовых показателей, имеющих форму отношений, обычно не является нормальным и “сильно перекошено”. Достоинством нейронных сетей является то, что такая ситуация не представляет для них проблемы. Кроме того, нейросети нечувствительны к корреляции значений предикторов, в то время как методы оценки параметров регрессионной модели в этом случае часто дают неточные значения.


В то же время многие нейронные парадигмы, такие как сети Кохонена или машина Больцмана не имеют прямых аналогов среди статистических методов.


каком-то смысле недоверие и даже “ревность” к нейросетевым методам в сообществе статистиков аналогичны такому же отношению, существовавшему в недалеком прошлом среди специалистов в области Искусственного Интеллекта. Теперь же значительную часть публикаций в журналах типа Artificial Intelligence (AI) или AI Expert составляют работы, посвященные нейронным технологиям. В настоящее время в статистическом сообществе растет интерес к нейронным сетям, как с теоретической, так и с практической точек зрения. Это проявляется в инкорпорации нейросетевых средств в стандартные статистические пакеты, такие как SAS и SPSS.


Что лучше, статистические методы или нейронные сети?


Лучшим ответом на этот сугубо практический для прикладника вопрос является “It depends». По-русски это означает “Все зависит от ситуации». Иногда, особенно если априорная информация о данных отсутствует, разумнее использовать нейронные сети. Такой выбор часто дает быстрое и качественное решение задачи, как правило не худшее, чем получаемое статистическими методами после тщательного изучения структуры данных.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»