Нейрокомпьютинг и его применения в экономике и бизнесе

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»

Е (v)


| tej сл Фр


2 Ё Ё W^JPVUXVJP + Ё ЯхVia 2


Таким образом находятся значения синаптических связей в сети


и значений порогов нейронов 3 = -у . Общее число весов в сети — порядка N*.


I& Сети Поттса. Значительного продвижения в эффективности нейросетевой оптимизации можно добиться выбрав более сложный тип нейронов — т.н. Поттсовские нейронны — для более естественного представления условий задачи в терминах нейросети (Gilsen et al., 1989). Поттсовский нейроны принимают одно из N значений, что можно описать Дивектором (0…. ,1…. О). в котором единица помечает принимаемое им значение. Если при решении задачи


коммивояжера сопоставить таким нейронам города, а их состояния соотнести с номером города в туре, то условие посещения города лишь однажды будет гарантировано автоматически.


После того как сеть построена, можно, стартуя со случайного начального состояния, проследить ее эволюцию к стационарной конфигурации, которая может дать если не оптимальное, то по крайней мере хорошее решение задачи. К сожалению, в описанном виде сеть чаще всего «застревает» в локальном минимуме относительно далеком от оптимума.


Для улучшения ситуации Хопфилд и Танк предложили использовать сети с непрерывными (аналоговыми) нейронами, принимающими любые значения в интервале хш е [о, l] 2 В


качестве тестовых они использовали задачи с 10 и 30 городами. В первом случае сеть в 20 попытках 16 раз эволюционировала к состояниям, описывающим осмысленный маршрут и в 10 случаях давала один из двух возможных оптимальных маршрутов. Поскольку для задачи с городами полное число всевозможных маршрутов равно NI/2N (делитель 2N возникает вследствие инвариантности маршрута относительно циклического сдвига и обращения направления движения), то в задаче с 10 городами оно составляет 181440. Таким образом, выигрыш при использовании сети, по сравнению со случайным выбором составляет 105. В случае задачи с 30 городами полное число маршрутов приблизительно равно 4.4×1030. Экономия, даваемая сетью, составила в этом случае 1022. В дальнейшем было показано, что использование сети Кохонена дает лучшие результаты при решении той же задачи. Однако, поскольку на практике (в робототехнике, при проведении стыковки космических аппаратов, в автоматической навигации) необходимо быстро находить хорошее, но не обязательно лучшее решение, то при электронной реализации аналоговая сеть Хопфилда дает исключительно эффективное решение задач оптимизации.

Скачать в pdf «Нейрокомпьютинг и его применения в экономике и бизнесе»