Interdisciplinary Applied Mathematics

Скачать в pdf «Interdisciplinary Applied Mathematics»

Sherman, F. S. (1990). Viscous Flow. McGraw-Hill, New Yo rk.

Shi, F. (1995). Simulation and Analysis of MEMS with Applications of Sensitivity Analysis and Optimization. PhD thesis, Cornell University.

Siewert, C. E. (2000). Poiseuille and thermal-creep flow in a cylindrical tube. J. Comp. Phys., 160:470-480.

Silvaco International (1995). ATLAS User’s Manual: MixedMode.

Simek, O. and Hadjiconstantinou, N. G. (2002). Constant-wall-temperature Nus-selt number in micro and nano-channels. J. Heat Transfer, 124:356-364.

Singh, A., Cummings, E. B., and Throckmorton, D. J. (2001). Fluorescent liposome flow markers for microscale particle-image velocimetry. Anal. Chem., 73(5):1057-1061.

Sinnott, S. B. (2002). Chemical functionalization of carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2(2):113-123.

Sinton, D. and Li, D. (2003). Electroosmotic velocity profiles in microchannels. Colloids Surf., A: Physicochem. Eng. Aspects, 222:273-283.

Sirisup, S. and Karniadakis, G. E. (2004). A spectral viscosity method for correcting the long-term behavior of pod models. J. Comp. Phys., 194:92-116.

Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. Quart. Appl. Math., 45:561-571.

Skordos, P. A. (1993). Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev. E, 48:4823-42.

Smith, B., Petter, B., and Gropp, W. (1996). Domain Decomposition. Cambridge University Press, Cambridge.

Soderman, O. and Jonsson, B. (1996). Electroosmosis: Velocity profiles in different geometries with both temporal and spatial resolution. J. Chem. Phys., 105(23):10300-10311.

Sokhan, V. P., Nicholson, D., and Quirke, N. (2001). Fluid flow in nanopores: An examination of hydrodynamic boundary conditions. J. Chem. Phys., 115(8):3878-3887.

Скачать в pdf «Interdisciplinary Applied Mathematics»