Interdisciplinary Applied Mathematics

Скачать в pdf «Interdisciplinary Applied Mathematics»


Kalko, S. G., Hernandez, J. A., Grigera, J. R., and Fischbarg, J. (1995). Osmotic permeability in molecular dynamics simulation of water transport through a single-occupancy pore. Biochimica et Biophysica Acta, 1240:159-166.


Kalyuzhnyi, Y. V. and Cummings, P. T. (1996). Phase diagram for the Lennard-Jones fluid modelled by the hard-core Yukawa fluid. Mol. Phys., 87:14591462.


Kang, M. S. and Martin, C. R. (2001). Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method. Langmuir, 17(9):2753-2759.


Kaniansky, D., Masar, M., and Bielcikova, J. (1997). Electroosmotic flow separation for capillary zone electrophoresis in a hydrodynamically closed separation system. J. Chromatogr. A, 792:483-494.


Kansa, E. J. (1990a). Multiquadrics — a scattered data approximation scheme with applications to computational fluid dynamics — I, surface approximations and partial derivative estimates. Comp. Math. Appl., 19:127-145.


Kansa, E. J. (1990b). Multiquadrics — a scattered data approximation scheme with applications to computational fluid dynamics — II, solutions to parabolic, hyperbolic and elliptic partial differential equations. Comp. Math. Appl., 19:147-161.


Karlin, I. V., Ferrante, A., and Ottinger, H. C. (1999). Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett., 47:182-188.


Karniadakis, G. E., Israeli, M., and Orszag, S. A. (1991). High-order splitting methods for incompressible Navier-Stokes equations. J. Comp. Phys., 97:414.


Karniadakis, G. E., Orszag, S. A., Ronquist, E. M., and Patera, A. T. (1993). Spectral element and lattice gas methods for incompressible fluid dynamics. In Gunzburger, M. and Nicolaides, R., editors, Incompressible Computational Fluid Dynamics. Cambridge University Press, New York.

Скачать в pdf «Interdisciplinary Applied Mathematics»

Метки