Interdisciplinary Applied Mathematics

Скачать в pdf «Interdisciplinary Applied Mathematics»


Bianchi, F., Ferrigno, R., and Girault, H. H. (2000). Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimension. Anal. Chem., 72(9):1987-1993.


Biesheuvel, P. M. and Verweij, H. (1999). Theory of cast formation in electrophoretic deposition. Journal of the American Ceramic Society, 82:14511455.


Bird, G. (1978). Monte Carlo simulation of gas flows. Ann. Rev. Fluid Mech., 10:11-31.


Bird, G. (1994). Molecular Gas Dynamics and Direct Simulation of Gas Flows. Oxford University Press, Oxford.


Bitsanis, I., Magda, J. J., Tirell, M., and Davis, H. T. (1987). Molecular dynamics of flow in micropores. J. Chem. Phys., 87(3):1733-1750.


Bitsanis, I., Somers, S. A., Davis, H. T., and Tirell, M. (1990). Microscopic dynamics of flow in molecular narrow pores. J. Chem. Phys., 93(5):3427-3431.


Bitsanis, I., Vanderlick, T. K., Tirell, M., and Davis, H. T. (1988). A tractable molecular theory of flow in strongly inhomogeneous fluids. J. Chem. Phys., 89(5):3152-3162.


Blake, T. D. (1990). Slip between a liquid and a solid: D.M. Tolstoi’s (1952) theory reconsidered. Colloids Surf., 47:135-145.


Blech, J. J. (1983). Onisothermal squeeze films. J. Lubrication Technol., 105:615620.


Bobetic, M. V. and Barker, J. A. (1970). Lattice dynamics with three-body forces: argon. Phys. Rev. B, 2:4169-4175.


Bocquet, L. and Barrat, J.-L. (1993). Hydrodynamic boundary-conditions and correlation-functions of confined fluids. Phys. Rev. Lett., 70(18).


Bocquet, L. and Barrat, J.-L. (1994).    Hydrodynamic boundary-conditions,


correlation-functions and Kubo relations for confined fluids. Phys. Rev. E, 49(4).


Boghosian, B. M., Love, P. J., Coveney, P. V., Karlin, I. V., Succi, S., and Yepez, J. (2003). Galilean-invariant lattice- Boltzmann models with H-theorem. Phys. Rev. E Rapid Communications, 68(2):025103.

Скачать в pdf «Interdisciplinary Applied Mathematics»

Метки