Interdisciplinary Applied Mathematics

Скачать в pdf «Interdisciplinary Applied Mathematics»


ф = фы (ZiUi > 0)    (15.16)


on the    boundary,    where    фы    may depend    on    ф    (Zini    < 0)    linearly.


We are looking for the asymptotic behavior of ф for small к following the method of analysis by (Sone, 1969; Sone, 1971) and (Sone and Aoki, 1994). In particular, expansions of the Grad-Hilbert form are sought for a moderately varying solution of equation (15.15), whose length scale of variation is on the    order    of    the    characteristic length    L of the    system    [Зф/dx.i    =    О(ф)],


in a power series of к:


ф = ф + фк + фк2 + ••• .    (15.17)


Corresponding to this expansion, the macroscopic variables u, ui, t, etc. are also expanded in к:


h = h + hk + hk2 + ••• ,    (15.18)


where h = u,ui,….


The asymptotic solution obtained by Sone is summarized below: A solvability condition yields the zeroth-order equation for the pressure, i.e.,


dPo


dxi



0,



(15.19)


and the following governing equations for different orders (m) of the expansion:


where



duj.



dxi


dPm+i


dxi д 2тт



7i-



д2г



im



ax



(m = 0, 1, 2,…)



(15.20a)


(15.20b)


(15.20c)


(15.20d)


and 7i is a constant related to the collision integral.


The corresponding stress tensor and temperature gradient vector of the Grad-Hilbert solution are


Pij 0    P0 &ij,    Pij 1    P1 pj + 71 Sij 0,



Pij2 = P2pj + 71Sij1 + 73


Pij3 = P3pj + 71 Sij 2 + 73



д2т0

Скачать в pdf «Interdisciplinary Applied Mathematics»

Метки